Determinação do valor da aceleração da gravidade usando o acelerômetro do celular: uma introdução à análise estatística

Os exercícios deste roteiro serão corrigidos pelo(a) professor(a) e utilizados como parte da avaliação da disciplina. Deve ser entregue um relatório impresso e preenchido por grupo.

Turma:	Estudante 1:	
	Estudante 2:	_
	Estudante 3:	

1.1 INTRODUÇÃO

Neste experimento será realizada uma estimativa coletiva da turma para o valor da aceleração da gravidade local, e uma correspondente estimativa para a incerteza nesse valor. Usaremos os acelerômetros presentes no celular de cada estudante, posicionando diversos deles sobre uma mesma mesa, e fazendo as medições simultaneamente. Será utilizado

novamente o aplicativo Phyphox® para fazer a aquisição dos dados de aceleração em função do tempo. Depois de baixar o aplicativo, acrescente o experimento *Accelerometer Statistics*¹. Você pode utilizar no aplicativo o *QR code* acima dentro do Phyphox®.

Antes da tomada de dados, a turma deve discutir e escolher que parâmetros serão usados por todos, tais como tempo de aquisição, tempo de atraso etc.

¹ M. Monteiro, C. Stari, A. C. Martí, A home-lab to study uncertainties using smartphone sensors and determine the optimal number of measurements, Journal of Physics: Conference Series, Vol. 2750, No. 1, p. 012032, 2024. **DOI** 10.1088/1742-6596/2750/1/012032

1.2 DADOS EXPERIMENTAIS

Preencha a Tabela com os resultados obtidos (um por cada estudante).

Tabela 2.1 — Resultados individuais obtidos por cada estudante

Celular	Marca	$g_i m/s^2$	$\sigma(m/s^2)$	n (contagens)
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				

Para compreender o procedimento de cálculo, comece por preencher a Tabela 2.1. e, depois, calcular o valor médio entre 3 celulares, e os correspondentes desvio padrão e erro padrão².

Celular i	g_i (m/s ²)	$(g_i - \bar{g})^2$ (m ² /s ⁴)
1		
2		
3		

Tabela 2.2 – um treinamento para os cálculos de valor médio e desvio padrão.

A primeira coluna é referente ao celular, e é atribuído a ele um número i, que vai de 1 a 3; a segunda coluna diz respeito ao valor de g medido pelo celular i, enquanto a terceira coluna é o quadrado da diferença entre cada dado e a média da amostra.

A) Determine inicialmente o valor médio para N=3. Consulte os valores de g_i na Tabela 2.2.

$$N = 3$$

$$\bar{g} = \frac{1}{N} \sum_{i=1}^{N} g_i = \underline{\qquad} m/s^2$$

Embora a notação matemática possa ser uma novidade, se trata simplesmente da média aritmética dos valores encontrados em cada telefone: some os 3 valores de g_i (i variando de 1 a 3) e divida o resultado por 3 (N=3). Agora utilize o valor médio calculado para terminar de preencher a Tabela 2.2. Aqui no item (A) você ainda não precisa se preocupar com os algarismos significativos. Calcule:

$$\sum_{i=1}^{N} (g_i - \bar{g})^2 = \underline{\qquad} m^2/s^4$$

Você pode se aprofundar um pouco mais sobre o assunto, acessando a página https://pt.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/variance-standard-deviation-population/a/calculating-standard-deviation-step-by-step>. Lá você vai encontrar, por exemplo, alguns exercícios interativos.

Desvio padrão
$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (g_i - \bar{g})^2} = \underline{\qquad} m/s^2$$

Incerteza no valor médio $\frac{\sigma}{\sqrt{N}} = \underline{\hspace{1cm}} m/s^2$ (Erro padrão)

Incerteza no $\frac{\sigma}{\sqrt{2(N-1)}} = \underline{\qquad} m/s^2$

B) Reescreva os valores obtidos no passo anterior na forma solicitada a seguir, respeitando o número correto de <u>algarismos significativos</u>⁴.

$$\bar{g} = (\underline{\qquad} \pm \underline{\qquad}) m/s^2$$
 $\sigma = (\underline{\qquad} \pm \underline{\qquad}) m/s^2$

C) Utilize agora uma ferramenta computacional e faça o cálculo usando os dados de todos os celulares listados na Tabela 2.1 (novamente, atenção à análise dos <u>algarismos significativos</u>).

$$\bar{g} = (\underline{\qquad} \pm \underline{\qquad}) m/s^2$$

$$\sigma = (\underline{\qquad} \pm \underline{\qquad}) m/s^2$$

- D) Compare em termos de <u>precisão</u>⁵ os resultados para \bar{g} obtidos em (B) e em (C).
- E) Compare em termos de <u>exatidão</u>⁶ os resultados para \bar{g} obtidos em (B) e em (C). Adote como referência para g na cidade do Rio de Janeiro o valor g_{Ref} = (9.788 ± 0.001) m/s².

³ A. M HELENE, O.; R. VANIN, V. Tratamento Estatístico De Dados Em Física Experimental. 2^a. ed. Blucher, 1991.

⁴ Use sempre um algarismo significativo nas incertezas. Já a decisão pelo número de algarismos significativos em \bar{g} e em σ é tomada a partir do cálculo da incerteza correspondente.

⁵ Qual das duas tem a menor incerteza relativa (percentual)?

⁶ Qual das duas está mais próxima do valor de referência?

F) O resultado obtido em (C) para \bar{g} é compatível com o valor de referência? Note que para responder esta pergunta você precisa estabelecer um critério de compatibilidade. Calcule a discrepância entre medida e valor de referência. Compare essa discrepância com as incertezas envolvidas, e apresente claramente o critério de compatibilidade usado neste item.

1.2.2 Histograma

Para produzir o histograma, complete a Tabela 2.3. Será necessário escolher um tamanho de intervalo razoável e condizente com as medidas efetuadas e os valores obtidos. Intervalos muito pequenos ou muito grandes são problemáticos. Discuta com seus colegas e/ou professor(a).

Tabela 2.3 – base de dados para o histograma.

Intervalo (m/s²)	Centro do intervalo	Número de eventos no
	(m/s ²)	intervalo

- G) Agora, em uma folha de papel de gráfico, à mão, faça seu histograma.
- H) Faça sobre o histograma uma representação gráfica dos valores para \bar{g} e σ obtidos usando os dados de todos os celulares.